Emergence of Auditory Receptive Fields Based on Surprise
at Multiple Timescales

Yashaswinit; Sneha Dash?'; Sharba Bandyopadhyay?
lInformation Processing Laboratory, Dept of E&ECE, Indian Institute of Technology Kharagpur

' ' ' iff ' I
Surprise-Driven Adaptation Tuning Curves at Different Timescales
| | | (a) TuningCurvesforNeurorj n; ” Tuning Curves for Neuron 4 - Tuning Curves for Neuron 5 Tuning Curves for Neuron 6 Tuning Curves for Neuron 7 Tuning Curve forNeurorf
- - Cochleagram Generation Surprise Calculation = =
Auditory cortical neurons respond . “ MelNet s
strongly to rare, surprising sounds : 5 ’
in a sequence. :
- - ;™ oE
i Audio data from : " : =
° LibriSpeech T sy SO -
htl - 1] Mil-1
Surprise
i 1= Lt [\ [l [ “ [\l [\ [\ o :—1— = Single layer of
ol ot e R R I I I A @ ———— | 1lneurons
E Sparsity Each takes
Emergence of Tuning Curves matching Auditory Cortex £ penalty 5 input from 10
es . frequency
. . : : : £ - channels
Insights from Mehra et. al., J Neurosci. 2022: Early Experience of Rare Overview of the Framework: Surprise based
Sounds Causes Long-Term Changes in the Adult Auditory Cortex Weight Adaptation and Sparsity Enforcement
Synaptic Weight Adaptation
Early Development Al Aoy @art demonstrate robustness, frequency selectivity and sideband inhibition at
' ult Auditory Cortex )
(Before Ear Canal Opening) Y The Lea rning Ru |e (a) 4 ms, (b) 16 ms, and (c) 64 ms timescales.

= Surprise PDF

Below 25%

25%-75%

Above 75%
=== 25% Quantile (x=4.942)
=== 75% Quantile (x=5.967)

T
|
I
|

1.6

» 144

1.2 1

(a) Distribution of Q1045 Values across Timescales (b) Table 1: QlOdB values (median, lOth, and
| 1.0 o8] =~ T T 90th percentiles) from our model across
2 e Long Term Depression Long Term Potentiation Stabilization 0.7 N timesczles- High}lligilted cells show close cor-
e 0.87 respondence wit 1 cortex measurements
Early exposure to rare sounds x 40; 3 O 3 QO 06 . (Table 2).

0.6 -

\

leads to stronger adult cortical .
Before hearing develops, subplate representations Aw = —f * surprlse}

Aw = «a * surprise Aw =y * SAT _THRESH

o
>

Parameter 4ms 16 ms 64 ms

Q1048 Values

0.4
neurons respond more to rare sounds.

o
w

0.2 - i Qioap (median)  0.594  0.596  0.590

o
N
|
|

R Y L. . T . T ' T rrryryr T

MIN_TH RESH\ SAT_TH RESH\ o 10th percentile  0.146  0.234  0.330
0.0 ' ——
. . : : : 4 ms 16 ms 64 ms 90th percentile 0.738  0.778 0.760
4.0 4.5 5.0 55 6.0 6.5 7.0 Timescale (ms)
Surprise
(c) Table 2: Q;pqp values (median and 10th-90th percentile) for different ferret auditory cortical areas, adapted
Classical models show how neurons encode natural stimuli efficiently and Surprise distribution estimated from MelNet is used to set thresholds at from Bizley et al. (2005). Al cortex values are highlighted.
: : - uartiles (MIN THRESH, SAT THRESH), driving a three-factor learnin
sparsely, using as few active neurons as possible. 9 (MIN_ y AT ) & & rratotor All xR AAF  DPSF  PPF  ADF  AVE

rule: depression (B) for low surprise, potentiation (a) for moderate
| | surprise, and stabilization (y) for high surprise. Post-update, sparsity is Qioap (median) 137 Lot 0.27 045 067 035 0.25

"\ | e Nobharangh — it - : . . . . percentile . . . . . . . . . . .

wvwmw MWH\ «-W{,%w ﬂNW enforced via L1-norm gradlent descent on activations. 10th 90th percentile  0.84 3.1 0.41 0.74 0.19 0.88 0 2.31 00 018 1.96 0.21 1.5

WMMWMMW,M M'”!.LWNWW (a) Q10dB boxplots show a mean increase across timescales, indicating broader

g g tuning at slower timescales and sharper tuning at faster timescales, consistent
Generatlng Tunlng curves with neurophysiological findings (Rodriguez et al. (2010)). (b-c) Model Tuning

Efficient Coding = Maximize Information, Minimize Redundancy

wwwm %}‘Ww e i’ Vs ;v\\‘:\;w

' , Curves Q10dB values show close correspondence with Al cortex reference data
\
wl\/wﬁwww‘;\,‘.fmwf/\w : from Bizley et al. (2005), particularly in median values (0.594-0.596 vs. 0.59)
"' | * " and 90th percentiles (0.738-0.778 vs 0.74) as highlighted in Table 1 and Table 2.
TS S "")) = = =
LA (R | A :
Ishausen & Field 1996 Smith & Lewicki 2006 Generate single oy . .
tones at cochlear Convert to Cochleagram Record each neuron’s Plot neuron activity vs
filter’s frequencies (per timescale) average activity frequency (Tuning Curve) Key FI n d : ngs an d F Ut ure WO rk

e Our model demonstrates that surprise-driven synaptic adaptation,
combined with efficient coding, can generate biologically plausible auditory
receptive fields.

* The emergence of broader tuning at fast timescales and sharper tuning at

slow timescales closely matches neurophysiological data obtained from the
auditory cortex.

* Q10dB values of our model’s tuning curves closely match those measured in
the ferret Al cortex, supporting the biological plausibility of our results.

 QOur framework predicts intensity-dependent tuning, narrow Frequency
Response Areas at low SPLs and broad at high SPLs. Quantitative validation
against neurophysiological data will be addressed in future work.

 Future work would include replacing MelNet with an adaptive network that
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But, what coding
principles allow neurons
to adapt to surprise?

’ (a-c) Smoothed percentage change in synaptic weights across five runs updates its prior distribution through experience and calculates surprise
shows fast and robust convergence at (a) 4 ms, (b) 16 ms, and (c) 64 ms dynamically, creating a more biologically plausible surprise-driven learning
timescales. Lower panels: Weight matrices of a neuron over time illustrate system. The current approach can also be extended to multi-layer
stable adaptation and frequency-specific structure at each timescale. architectures to better capture hierarchical auditory processing.
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