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Surprise! Did you hear that coming?

The Learning Rule

Key Findings and Future Work 

Auditory cortical neurons respond 
strongly to rare, surprising sounds 

in a sequence.

Efficient Coding = Maximize Information, Minimize Redundancy

Classical models show how neurons encode natural stimuli efficiently and 
sparsely, using as few active neurons as possible.

Olshausen & Field 1996 Smith & Lewicki 2006 

Surprise-Driven Adaptation
Cochleagram Generation Surprise Calculation

But, what coding 
principles allow neurons 

to adapt to surprise?

MelNet

Sparsity 
penalty

Synaptic Weight Adaptation

Emergence of Tuning Curves matching Auditory Cortex 

Overview of the Framework: Surprise based 
Weight Adaptation and Sparsity Enforcement

Surprise
(α, β, γ)

Δ𝑤 = −𝛽 ∗ surprise Δ𝑤 = α ∗ surprise Δ𝑤 = γ ∗ 𝑆𝐴𝑇_𝑇𝐻𝑅𝐸𝑆𝐻

MIN_THRESH SAT_THRESH

Long Term Depression Long Term Potentiation Stabilization

Surprise distribution estimated from MelNet is used to set thresholds at 
quartiles (MIN_THRESH, SAT_THRESH), driving a three-factor learning 
rule: depression (β) for low surprise, potentiation (α) for moderate 
surprise, and stabilization (γ) for high surprise. Post-update, sparsity is 
enforced via L1-norm gradient descent on activations.

Audio data from 
LibriSpeech

Fast Convergence of Weights

Tuning Curves at Different Timescales

(b) (c)

Early Development 
(Before Ear Canal Opening)

Before hearing develops, subplate 
neurons respond more to rare sounds.

Adult Auditory Cortex

Early exposure to rare sounds 
leads to stronger adult cortical 

representations

Insights from Mehra et. al., J Neurosci. 2022: Early Experience of Rare 
Sounds Causes Long-Term Changes in the Adult Auditory Cortex

Generate single 
tones at cochlear 

filter’s frequencies
Convert to Cochleagram 

(per timescale) 
Record each neuron’s 

average activity

Plot neuron activity vs 
frequency (Tuning Curve)

(a)

(a–c) Normalized tuning curves of a subset of neurons across 5 runs 
demonstrate robustness,  frequency selectivity and sideband inhibition at 
(a) 4 ms, (b) 16 ms, and (c) 64 ms timescales.

(a-c) Smoothed percentage change in synaptic weights across five runs 
shows fast and robust convergence at (a) 4 ms, (b) 16 ms, and (c) 64 ms 
timescales. Lower panels: Weight matrices of a neuron over time illustrate 
stable adaptation and frequency-specific structure at each timescale.

Generating Tuning Curves

• Our model demonstrates that surprise-driven synaptic adaptation, 
combined with efficient coding, can generate biologically plausible auditory 
receptive fields.

• The emergence of broader tuning at fast timescales and sharper tuning at 
slow timescales closely matches neurophysiological data obtained from the 
auditory cortex.

• Q10dB values of our model’s tuning curves closely match those measured in 
the ferret A1 cortex, supporting the biological plausibility of our results.

• Our framework predicts intensity-dependent tuning, narrow Frequency 
Response Areas at low SPLs and broad at high SPLs. Quantitative validation 
against neurophysiological data will be addressed in future work.

• Future work would include replacing MelNet with an adaptive network that 
updates its prior distribution through experience and calculates surprise 
dynamically, creating a more biologically plausible surprise-driven learning 
system. The current approach can also be extended to multi-layer 
architectures to better capture hierarchical auditory processing.

Alignment with Neurophysiological Data
(a) (b)

(c)

(a) Q10dB boxplots show a mean increase across timescales, indicating broader 
tuning at slower timescales and sharper tuning at faster timescales, consistent 
with neurophysiological findings (Rodriguez et al. (2010)). (b-c) Model Tuning 
Curves Q10dB values show close correspondence with A1 cortex reference data 
from Bizley et al. (2005), particularly in median values (0.594–0.596 vs. 0.59) 
and 90th percentiles (0.738–0.778 vs 0.74) as highlighted in Table 1 and Table 2.

Single layer of 
11 neurons

Each takes 
input from 10 

frequency 
channels
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